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1 Introduction

This report describes the research work undertaken at tile Massachusetts Institute of Technology,

under NASA Resear(:h Grant NAG-I-2122. The aim of this research is to identify effective algo-

rithms and methodologies for tile efficient and routine solution of hypersonic viscous flows about

re-entry vehicles.

For over ten years we have received support from NASA to develop unstructured mesh methods

for Computational Fluid Dynamics. As a result of this effort a methodoh)gy based on ttle use

of unstructured adapted meshes of tetrahedra and finite volume flow solvers has been developed.

A number of gridding algorithms, flow solvers, and adaptive strategies have been proposed. The

most successful algorithms developed from the basis of the unstructured mesh system FELISA.

The FELISA system has been extensively for the analysis of transonic and hypersonic flows about

complete vehicle configurations. The system is highly automatic and allows for the rotine aerody-

namic analysis of complex configurations starting from CAD data. The code has been parallelized

and utilizes efficient solugion algorithms. For hypersonic flows, a version of the code which incor-

porates real gas effects, has been produced. One of the latest developments before the start of this

grant was to extend the system to include viscous effects. This required the development of viscous

generators, capable of generating the anisotropic grids required to represent boundary layers, and

viscous flow solvers. In figures 1 and 2, we show some sample hypersonic viscous computations

using the developed viscous generators and solvers.

Although these inital results were encouraging, it became apparent that in order to develop a

fully fimctional capabilit for viscous flows, severl advances in gridding, solution accuracy, robustness

and efficiency were required. As part of this research we have developed: 1) automatic meshing

techniques and the corresponding computer codes have been delivered to NASA and implemented

into the GridEx system, 2) a finite element algorithm [2], [27] for the solution of the viscous

compressible flow equations which can solve flows all the way down to the incompressible limit and

that can use higher order (quadratic) approximations leading to highly accurate answers, and 3)

and iterative algebraic nmltigrid solution techiques [31].

Finite element algorithms have been enormously successful in the field of structural mechanics

and in that field, they arc the method ()f choice. They have a solid mathematical foundation

and offer complete geometrical flexibility. Finite element methods utilize compact supports, which
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Figure 1: Mach 12 flow about a cone-sphere geometry. Meshes and computed inviscid and viscous

pressure contour solutions on the same mesh
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Figure 2: Mach 10.6 flow about a re-entry configuration. Meshes and Mach number contours for

inviscid and viscous solutions on the same mesh



substantiallyaid the implict solutionprocedure,and,whenproperlyformulated,can be extended

to arbitrary orders of accuracy.

Multigrid techniques are well known for their efficiency in solving symmetric positive definite

problems. Unfi_rtunately, the discretization of the Navier-Stokes equations generates systems of

equations which are unsymmetric and much harder to solve.

This grant was terminated a year earlier than anticipated and therefore the objectives outlined

in the proposal have only been partially attained. The work reported below has been partially

supported by this grant.

2 Automatic Gridding Techniques

Over the past few years we have developed a number of gridding algorithms for inviscid and

viscous flows [1]. In order to make these algorithms widely usable within the NASA community, an

unstructured grid generation library for the discretization of surfaces and volumes into triangular

and tetrahedral elements was written. This library was then incorporated into the GridEx system

to produce a fully flmctional tool capable of reading CAD data in various widely used formats, and

producing meshes suitable for analysis with minimal effort. Because of the reduction of period in

the execution of this grant only the inviscid meshing capability was actually integrated into GridEx.

3 Finite Element Solution of the Compressible Flow equations

Our aim here is to develop a robust and accurate finite element algorithm which is capable of

solving flows ranging from low subsonic to transonic and hypersonic regimes. We regard the possi-

bility of using higher order approximations as being highly attractive, specially for complex three

dimensional flows which requiring high levels of resolution.

ttere we present some of the accomplishments carried out during this grant period and which
2

build upon existing finite element methods.

3.1 The solution of the Compressible Euler Equations at Low Mach Numbers

For low Mach numbers, the compressible Euler and Navier Stokes equations describe almost incom-

pressible flow. This singular limit of the compressible flow equations is reasonably well understood.

Indeed, under the assmnption of isentropic flow, and some regularity conditions on the initial and



boundarydata, tile soh,tionof tile compressibleequations,in tile zeroMachnumberlimit, can

be shown to satisfy the incompressible flow equations [17, 12]. From tile computational point of

view, accurate solutions of nearly incompressible flows are difficult to obtain. This is due to the

very different magnitude, of the wave speeds which are present in the system. Our interest is in

the development of a compressible flow algorithm which is capable of solving flows ranging from

ahnost incompressible to supersonic regimes. There are several reasons that justify the development

of such algorithm. The first and most important is that in many situations, such as high angle

of attack aerodynamics, large regions of very low Mach number coexist in the flow domain with

regions where the flow is supersonic. Another more practical motivation is that an algorithm that

can successflflly handle free stream Mach numbers as low as 10 -a is well suited for a broad range

of applications typically handled with incompressible formulations.

Over the last few years, stabilized finite element algorithms for the solution of the Euler and

Navier-Stokes equations have gained increased popularity. Streamline-Upwind/Petrov-Galerkin

algorithms (SUPG), and some of its relatives, have been presented and analyzed in numerous papers

[15, 16, 21]. These algorithms, although not so widely used as their finite volume counterparts,

possess many attractive features. In particular, they have a compact support and can be used

with elements of arbitrary order, yielding solutions of increased accuracy whenever the solution is

sufficiently smooth. In addition, there exists a rather well developed theory for linear problems

which can be used to provide design criteria for the development of successflfl algoritlams for non-

linear equations.

One of the critical ingredients of SUPG algorithms is the construction of the stabilization matrix

r. Whilst the convergence analysis for the linear problem only dictates that this matrix has to

be symmetric positive definite, scale appropriately with the local grid size, and have dimensions of

tiine, much freedom is still available to fully determine it. Only under some very simplified cases

(e.g. one dimensional flow) is the optimal choice of r unambiguous.

Classical compressible flow formulations, including the existing SUPG algorithms, fail to give

adequate numerical solutions when the flow approaches incompressibility. Whenever the Mach

number is progressively reduced, keeping the grid size fixed, a degradation in the solution accuracy is

observed. This phenomenon has been studied extensively in the context of finite volume algorithms

[24, 19, 7], and several explanations have been proposed. The most common argument is based

on the mismatch which occurs, for low Mach numbers, between magnitude of the fluxes in the

original equations and the corresponding terms in the numerically added artificial viscosity. Some



localpreconditioningstrategies,aimedat modifyingthe nmnericalartificial viscosityto avoidthis

mismatch,haveprovento be extremelysuccessful[4, 25, 5, 26]. Accuratesolutionsfor Mach

numbersas low as 10-3 havebeenreportedusingsuchpreconditionedalgorithms. Oneof the

main drawbacksof thesepreconditionersis their lack of robustnessnearstagnationpoints. The

re,on for this canbe traced[6] to a lackof stabilizationcausedby theeigenvectorsof the artificial

dissipationmatrix becomingnearlyparallel.

The formulationof numericalalgorithmsfor the compressibleflowequationsemployingsym-

metrizing,orentropy,variableshasbeenadvocatedby severalauthorse.g. [14,3]. Oneof theclaims

oftenmadeis that discreteschemesformulatedin entropyvariablesinheritglobalentropystability

propertiesof the originalequations.Gustafsson[11]pointsout that, for a hyperbolicsystemof

equations,thehigherthe degreeof unsymmetry,asmeasuredby theconditionnumberof thetrans-

formationrequiredto symmetrizethe system,the lesserthe well-posednessof the problem,in the

sensethat perturbationsof the initial data influencethe solutionmore. As it turns out, the com-

pressibleEulerequationsfornmlatedin termsof either primitive or conservativevariablesbecome

increasinglyunsymmetricwhenthe referenceMath numbergoesto zero. From our perspective,

oneof the mainattractivefeaturesderivedfrom the useof entropyvariablesis that the dissipation

operatorremainssymmetric.This meansthat a full setof orthogonaleigenvectorscanalwaysbe

foundandthereforethestabilizationtermsremaineffectivethroughoutthecomputationaldoamin.

In thisrespect.,the combinationof thepreconditioningideaspresentedin thefinite volumecontext

to dealwith low Math numberflowscombinedwith a fornmlationin entropyvariablesseemsvery

appealing.

Here,weproposea specifcconstructionof the stabilizationmatrix 7"for a finiteelementSUPG

formulationof the steadystate Euler equations.The developmentof suchstabilizationmatrix

incorporateslowMachnumberpreconditioningconcepts,previouslydevelopedin thefinite volume

context. Theideaspresentedhereextendto the time dependentand the Navier-Stokesequations

in astraightforwardmanner.Theequationsarefirst transformedintoa newsetof variableswhich,

in the low Machnumberlimit, canbeeasily relatedto the incompressiblevelocity and pressure.

A necessaryconditionfor stability,whenthe Machnumbertendsto zero,isobtainedby requiring

that, the asymptoticbehaviorof the stabilizationtermsmatchesthat of the termsin the Euler

equations.This requirementresultsin someadditional constraintson _-whichare not typically

satisfiedby theclassicalchoicesof'r. The proposed algorithm combines the very attractive features

of the stabilized finite element formulations with the ability to produce accurate answers over a



very largerangeof Math numbers.

Westartwith abrief descriptionof theSUPGformulation fi)r the Euler equations using entropy

variM)les. For simplicity of presentation we will consider the two (timensional case, but results

herein presented extend directly to three dimensions and are also applicable to the Navier-Stokes

equations. Next, we discuss the low Math number scaling arguments which lead to the proposed

form of stabilization matrix 7" and outline our numerical implementation. Finally, numerical results

using linear elements are presented for the flow over isolated cylinders and airfoils with free stream

Mach numbers ranging from 10 .3 to moderate subsonic values. In the next section, we present

results for transonic flows using higher order elements.

3.2 Compressible flow governing equations

3.2.1 Conservation variables

We start from the time dependent two dimensional compressible Euler equations in conservation

form

U,t + FIj + F2,2 = 0, (1)

where

P

pul
U=

pu2

pE

, F1 =

p?t 1

pu_ + p

p_t 1U2

u_ b,E + p)

, F2 ---

fllZ2

pulu2

pu_ + p

u2(pE + p)

In the above expressions, p is the density; u = ['ttl,?12] T is the velocity vector; E is the specific

total energy; p is the pressure; and the comma denotes partial differentiation (e.g. U t = OU/Ot,

the partial derivative with respect to time, Fi,a = OFi/Oxj, the partial derivative with respect to

the j-th spatial coordinate). The system of equations is closed once the pressure is related to the

problem variables through the equation of state, p = (7 - 1)pe, where e = E-lul2/2, is the internal

energy. Here, 7 is the ratio of specific heats which is assumed to be constant.

We will assume that all the above quantities have been non-dimensionalized using reference,

or free stream, values for density p,, velocity u., and length L. Thus, the dimensional variables,

denoted with an overbar, are related to the non-dimensional variables introduced above as

p= --,p. ui =--u,, i= 1,2, p- p.u2., E 72 ,t, xi L ' i 1,2, and t----L"



Finally, we introduce the reference speed of sound c., and define, for later use, a reference Math

number as e = u./c..

We note that the equation system (1) can be written as

U,t + A_U,I + A2U,2 = 0, (2)

where the Jacobian matrices Ai = Fi,u, i : l, 2, are unsymmetric but have real eigenvahms and a

complete set of eigenvectors.

3.2.2 Entropy variables

We seek a new set of variables V, called entropy variables, such that the change U = U(V) applied

to (1) give the transformed system

U(V),t + FI(V)j + F2(V),2 = 0, (3)

where A0 = U v is symmetric positive definite, and -Ai = AiA0 = FiN, i = l, 2, are symmetric.

Following [13], we introduce a scalar entropy function H(U) = -pg(s), where s is the non-

dimensional entropy s = In(p/p'_). The required change of variables is obtained by taking

e(7-g/g') lul /2

V =- H T gl ,it1= -- ' (4)
,U C

U2

-1

The conditions gt > 0 and g"/g_ < 7 -1, ensure that, H(U) is a convex function and therefore

Ao I = V,u = H,uu, and A0, are symmetric positive definite. We consider in [2] the variables

resulting from two particular choices of the function g(s). The system (3), can thus be written in

symmetric quasi-linear form as

A0V,t + hlV,1 + A2V,2 = 0. (5)

Barth [3] noted that it is always possible to construct matrices 15_, i = 1, 2 whose columns arc

thc scaled right eigenvectors of Ai, i = 1, 2 respectively, such that

an(l

A0 = filfi T = fi2fi T,

An explicit expression for 1_, i = 1,2, is given in [2].

(6)

for i = 1,2. (7)
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3.3 Low Mach number limit

The low Math numberlimit of the Euler equationsis beststudiedt)y rewriting the equationsin

termsof tile variables(p,ui, u2, s). This yields tile fi)llowing system

±a/,
pc Ot

o,,1
Ot

Ot

Os
Ot

_tl

c

+
0

0

c 0 0

ul 0 0

0 ul 0

0 0 ul

±o_v__
pc Ox l

Ozl

&r 1

Os
O,r l

+

_2 0 c 0

0 u2 0 0

c 0 u2 0

0 0 0 u2

In matrix form, this system can be written

lop
pc Ox2

Oar2

Ox2

Os

Oz2

0]
01

01
!

01

(s)

Z,t -}- C1Z,1 + C2Z,2 = 0, (9)

where the matrices C, and C.) are symmetric and dZ = [d_b,&q du2, ds] T with d_b = _ If we
pc"

assume that the flow is isentropie, whictl is certainly satisfied for low Mach mlmbers when the free

stream is isentropic, we can express c and p as a function of p, i.e,

p-y p('r-1)/2

p = _ and c - e '

to obtain [10],

2 (p(7-1)/2_1)_ 2 (c-1).
qS- (7- 1)_ 7- 1 c

In terms of (p, ul and u2, the continuity and momentum isentropic compressible flow equations

become

qS,t-_-ltl_,l -t- (_--iq'+ !) '/tl,1 -1-'g2_),2 nL (_@q_-t- 1) '[t2,2 = O,

2tl,t -+-(_) + !) q_,l -1-_1Ul,1 + U2_L1,2= O, (10)

• !)
Note that, in ,assuming isentropic flow, we have reduced the number of dependent variables by

eliminating entropy from the system of governing equations. Equations (10), look now similar to

the incompressible flow equations

_;t,l + fi2,2 = 0

fil,t +P,I + filfil,1 + lt2fil,2 = 0 (11)

'/_2,l + _tl_2,1 q-/),2 + fi2212,2 = 0,

11



wherefi = [_tl,fi2] T, denotes the velocity and /5 tile pressure. When e -_ 0, the equivalence

between (10) and (11), under some regularity assumptions on the initial and boundary data, can be

rigorously shown [12]. In particular, we have that for e _ 0, ui -_ iti and ((3' - 1)¢/2 + a/e) ¢,i

/_,, for i = 1, 2. To obtain bounded derivatives when e _ 0, it follows that ¢,i and uI,_ + u2,2 must

be O(e). We also note that the velocity components u, and its spatial derivatives _ti,j: i, j = 1,2 are

O(1). Finally, it can be shown that ¢ is O(e) and that ¢/_ is well defined in the limit _ --+ 0.

We now turn our attention to the steady state Euler equations for isentropic flow and derive

some asymptotic estimates which are valid in the low Math number limit. The equations for this

reduced problem are,

zl=

where

CIZ I CIZ I = 0 (12)1 ,1 nt- 2 ,2

¢

?tl

_t2

c[=
ul c 0

c ul 0

0 0 ul

Using the above estimates we have that, for e _ 0,

Z ! ,._ Z I
_l ,2

o(0

o(1)

o(1)

, c[~

0(1) O(e -1 )

O(e -1) 0(1)

0 0

,

0

0 , C2I_

O(1)

Thus, for the individual terms of the isentropic Euler equations,

u2 0 c

0 u2 0

c 0 u2

O(1) 0 O(_ -1)

0 O(1) 0

O(e -1) 0 O(1)

(13)

cIzl ,._ clz I
1 ,1 2 ,2 0(1)

0(1)

_e_O.

3.4 Variational formulation for the steady state problem

(14)

We now consider the compressible steady problem in conservation form expressed in terms of

symmetrizing variables. The conservative form of the equations is taken to be the starting point

because we are ultimately interested in an algorithm that can be used over the whole range of

speed regimes, including situations were the solution may contain diseontinuitites. The problem is

12



definedin a domainQwith boundaryF by

FI(V),I+F2(V),2=0 in Q, (15)

A,,V-_&_g on F\F_, (16)

u.n=0 on F_. (17)

For siml)licity,thedomainboundaryis assumedto bemadeup of an impermeablesolid wall Pa,

andacomputationalfar fieldboundaryF\Fa. In (16,17),n = [nl, n2] v is the outward unit normal

vector to F, and -g,n = AnA0, A,_ = Aln_ + A2n2. Finally, _&_-= AnA0, and Ag denotes tile

negative definite part of An.

Let tile spatial domain f_, be discretized into non-overlapping elements Te, such that ft = _ Te,

and Te _ Te' = O, e # e'. We consider the space of fimctions Vh, defined ()vex"the (liscretization and

consisting of the continuous functions which are piecewise linear over each element

Vh = {WIW E (C°(9t)) 4, WIT_ C (TVl(T_)) 4, VT_. C f_}.

The SUPG algorithm can then be written as: Find Vh C V h such that for all W C l,_h,

B(Vh, W)gal + B(Vh, W)sup9 + B(Vh,W)bc = 0, (18)

where the forms B(.,.)g_t, B(.,.)_pg and B(.,.)b_ account for tile Galerkin, SUPG stabilization,

and boundary condition terms respectively, and are defined a_s

B(V,W)gal = f(-Wj -F1(V) - W,2" F2(V)) df_, (19)

= [( iw,t + ._2w,2) • r (k.lV,1 + -4.2V,2) dl2, (20)B(V, W)sup9
Jn

and

B(V,W)b_ = fr W- Fw(V;n) ds + fr W.Fli(V,g;n) ds. (21)
o \r.

where r is the stabilization matrix. The numerical flux fimction on the impermeable wall boundary

F_, is simply [O,pnl,pn2,0] r while the numerical flux fimction on the far field boundary Fir, is

defined by

F//(V_, V+; n) = _ (Fn(V_) + Fn(V+)) - _lAn(Vno_ (V-, V+))I(U(V+) U(V_ )).

tlere, [A,_(V)[ = A_-(V) -A (V) is the absolute value of An evaluated at V, and V Roe(V+, V_),

is the Roe average [20], between the states V + and V-.

13
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Figure 3: Mapping between the master triangle Te and a typical element Te.

3.4.1 Standard definitions for r

In order to uniquely specify tile SUPG algorithm (18), an appropriate expression for the stabilization

matrix "I-needs to be given. We recall that an appropriate v should be symmetric, positive definite,

have dimensions of time, and scale linearly with the element size [15].

For a triangle T_, we introduce the mapping x = x((), between the master triangle Te, in the

parametric space _ = [41, _2]T, and re E _ in the mapped space x = [x_, :L'2] T, as illustrated in

figure 3. We define

B1 = (x2,_2/_.1 - xl,(2h2)/J,

B2 = (Xl,_l/_k2 -- x2,_,/_kl)/J,

B3 = ((x2,_, -x2,_2)X1 + (Xl,_2- xl,_,)_k2)/J,

and the Jacobian of the mapping, J = x1,_x2,_2 - x2,_xl,_. The following definition for "r can bc

shown to satisfy all of the above requirements

7- = A0 -1 (IBI[ p + [B2I p + IBz[V) -Up . (22)

The most common choice for p has been 2, which necessitates the evaluation of a matrix square

root. This choice has been advocated by Shakib et al. [21], whereas Barttl [3], has shown that the

choice p = 1 is computationally advantageous and, in practice, gives very similar results.

These choices of stabilization matrix, work well provided that the flow Math numberis not too

low. For problems involving significant regions of low Mach nmnber flow the solution degrades

and becomes less and less accurate _s the Math number is decreased. In the following sections we

will address this issue by first, identifying the source of the prot)lcm, and second, devising a new

1,1



fi)rmulation for r which does not suffer fl'om this drawback and which leads to a formulation which

can hanttle very low Math numbers accurately.

3.5 A stabilized formulation for isentropic flows

351rkel et al. [24] have employed a scaling analysis to determine the appropriate low Math number

behavior of local prcconditioners. In their application, the local preconditioner modifies the upwind

dissipation of the underlying finite volume or finite difference discretization. In this section, we will

consider a stabilized SUPG formulation applied direclty to the isentropic equations (12). We will

extend the analysis presented in [24] to our finite element formulation and, in particular, derive the

appropriate scaling for the stabilization matrix in the limit of vanishing Mach mmaber.

Introducing the fnite element space,

vX = (WZl w' _ (c°(_)) 3, WIlTe U=_('PI(Tc)) 3, '7'Z e e _c,_}.

we consider the following SUPG formulation : Find Z_ E 1;ht such that for all W _ E V/,,

I I I BI(Z I W IBI tzIk h, WI)gal + B (Zh,W)sup9 + t h, )be = O, (23)

f_ (C/Z [ C/Z r _ dft,Br(Z1,Wl)9_l = (w1" t _ ,_ + 2 ,2jj (24)

where,

BI(Z l,w/)s_pg _ * 1 I [ q'* [ / _IZ* _ df_, (25)-- (CAW,1 -t- C2W,2 ) • (el Z,l -Jr- "J2 ,21

and BI( ., ")b_ is a term incorporating the desired boundary conditions. Note that here, the Galerkin

term (24) has been integrated by parts, thus, BI( ., ")bc also includes the additional boundary terms.

Our desire is to construct a stabilized finite element method which admits solutions, Z_, with

the same low Mach number asymptotic behavior as the solutions of the isentropic Euler equations,

Z 1. In addition, wc require that the stabilization operator (25) must scale like the Galerkin and

boundary operators (24) as the Mach numl)er is reduced. Specifically, these requirements imply

that

for e -+ O, (26)I I I I
ClZh, 1 _1_ C2Zh, 2

0(+ -t)

o(1)

0(1)

15



andthat,

'' ''• ,'.. CjZh, 1 + CjZhj. for i = 1,2, e _ 0. (27)

Expressions (26) and (27), provide an additional condition, on the asymptotic behavior of the

components of the stabilization matrix q.t that should be satisfied for c -_ 0. This condition can

0(1) 0(_ -1) O(f --1)

0(_ _) 0(1) 0

0(_-') 0 0(1)

be written as,

3.5.1

Tll T12 TI3

TI 2 7-22 7-23

713 T23 7.33

o('1) 1
O(1)

O(1)

Asymptotic behavior of r using standard definitions

O(_-1)

"_ O(1)

O(1)

(28)

We consider now the standard definition of tile stabilization matrix, given in (22), applied to

our simplified problem (23), and show that it fails to satisfy condition (28). Specifically, for one

dimensional problems, the standard stabilization (22) is, for p = 1,

where t_, is a constant proportional to the element size. Based on the above assumed behavior of

the solution, it can be shown that for e -* O,

_"_ o(__) o(d "
(29)

It can easily be verified that this stabilization matrix, does not satisfy the condition (28), which in

the one dimensional case is

O(1)

O(_-1)

Therefore, this form of i-I,

. ,3o,
will fail to provide adequate stabilization when e _ 0. It can also be

shown that, in the multi-dimensional case, the standard choice of stabilization matrix (22), does

not have the appropriate asymptotic behavior for e --_ 0, either.

When working directly with entropy, or conservative variables, the analysis is more complicated

because the link between these variables and the incompressible velocity and pressure is less trans-

parent. It is observed in practice that the standard stabilization scheme (22), when used with the

equations written in terms of entropy variables, producc solutions which deteriorate severely when

16



tile Math numberis reduced.Ill [9], tile useof tile standardfinite volumeupwindscheme,using

Roe'sdissipation,is shownto giveill tile incompressiblelimit, solutionsin whichthepressurevari-

ationsdo not.scalelike the Math numbersquar_'d.This first orderfinite volumeupwindscheme,

can be thought of, at least in one dimension, as the result of using a stabilization matrix of the

form (22), directly with conservative variables.

3.6 Alternative definition of 7- for low Mach number flow

Our objective is to derive a stabilization matrix r, for the variational formulation in entropy

variables (18). An approach which has been advocated in the design of low Math preconditioners

for finite volume schemes [24, 7], has been to derive an appropriate stabilization matrix q', for the

system (8), and then transform it to conservative variables.

It is apparent that, even with the additional constraint given by condition (28), the stabilization

matrix is not uniquely defined and some freedom is still available in constructing it. In addition

to the requirements placed on the construction of the standard forms of q-, i.e. (22), we place the

following three constraints:

i) tile entropy equation, which decouples from the other equations, is stabilized as an indepen-

dent quantity eonvected with the velocity.

ii) the vorticity equation, which, in the incompressible limit, decouples from the other equations

after taking the curl of tile velocity evolution equations, is stabilized as an independent

quantity convected with the velocity.

iii) the resulting algorithm has the correct low Mach number scaling as discussed in the previous

section.

In order to incorporate the above conditions, we consider the Euler equation corresponding to the

variational formulation (23), augmented with the entropy equation,

ClZ,l _- C 2 Z,2 _--- (C17"(ClZ,l -1- C2Z 2)),1 -t- (C2T(ClZ,1 n t- C2Z,2)),2 .
(31)

We shall further assume that, only for the purpose of deriving r, the matrices C1 and C2 are locally

constant and therefore the above system of equations can be treated as if it was linear.

Requirement i) forces the last row and column of q" to be zero, except for the diagonal entry

which corresponds to a velocity time scale. Requirement ii), implies that the rest of the matrix

17



mustalsobeof diagonalform.Theentriesin thesecondandthird rowsmustbeequalandarealso

associatedwith a velocitytime scale.Therefore,we find that i-, for thecompletesystemmust be

of the form

aO0

O b O

O O b

000

0

0

0

b

(32)

where b = 1/]u] and he is the size of tile element. In order to satisfy tile low Math number scaling,

it is clear that b _ O(1), and therefore a must be O(e2). The simplest choice, having the right

dimensions, is a = [u[/c 2. For very high speed flows, the stabilization should transition to a pure

streamwise upwinding such that a + 1/[u 1. In practice, the specific definition of _" which we use

is,

7_ 0 0

0 % 0

0 0 r_

0 0 0

0

0

0

rc

(33)

where rc is the convective timescale and % is the acoustic timescale. Specifically, for the convective

timescale, we employed a form proposed in [18] for scalar convection,

_-
[li- £1[

i=l li li '

where fl is the average velocity in the element, and li is the vector between the nodes of side i of

the element. We then define the acoustic timescale as,

C 2

Using these definitions, the acoustic timescale, %, has the correct low Mach number behavior

required by the asymptotic analysis. Also, ra behaves appropriately for large local Math numbers

where it returns to the convective timescale r_.

Finally, the required form of r can be obtained by transforming the system (31) to entropy

variables. In principle, this could be accomplished by using the transformation matrix S = V,z.
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lns(_i'tingdZ = S--I_W into (31) and multiplying through 1)y S --T, gives,

S TC,S 'V,, +S :_C_S 'V_ = (S-:_C,S-'S_-ST(S TC,S 'V_+S TC_S 'V2)),,+

(S TC2S-'S_'ST(S-TC,S iV,, +S--TC_S IV,2)), 2.

(34)

Where, the transformed matrix T, can be readily identified _s

T = S TS T. (35)

We note that the transformed matrices S TCIS-I,i = 1,2, are not equal to A-i, i = 1,2 and indeed

S TS-1 is not be equal to A0. This is due to the fact that the entropy equation in (8), completely

decouples fl'om the rest of the system. Therefore, one can multiply the first three components of

dZ, i.e. @/pc, dul, du2, by a scalar factor, and the fourth component of dZ, i.e. ds, hy different

scalar factor without changing the jacobian matrices Ci,i = 1,2, or _-, in (31). It is not hard to

find the scalar factors that one should use to define modified dZ variables so that the resulting

S matrix would give s-Tcis -1 = ii,i = 1,2. An alternative procedure for evaluating S, which

avoids the use of modified variables is given in [2]. Once the appropriate transformation matrix

has been evaluated, r is found using expression (35).

3.7 Numerical results

In this section we present some numerical results that illustrate the perfi)rmance of the proposed

algorithm. For all the examples, we have solved problem (18), which is expressed in terms of

entropy variables. The non-linear set of equations resulting from the discretization of (18) is solved

by a Newton-Raphson iteration using exact linearization. For some of the simulations however, it

was necessary to damp the Newton-Raphson iteration during the first few iterations. The solution

of the non-symmetric non-linear system of equations required for each iteration was solved using

an enhanced BiCGstab(2) algorithm [8, 22] together with a block ILU(k) preconditioning, with k

either 0 or 1. For all the examples we have considered the two choices of entropy variables given in

[2], and we have not found any appreciable differences in the computed results. We have followed

[3], and employed a linear representation of the solution over each triangular element, but have

used a quadratic mapping to more accurately represent the geometry. We have found that using

quadratic interpolation of the geometry greatly improves the quality of the solution and only incurs

a minimal incremental cost.
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3.7.1 Example 1: Flow over cylinder

Ill this exmnt)le, we consider the flow about a cylinder and perform several numerical tests. Because

of tile symmetry ()f the problem at the low Mach numbers considered here, only half of the domain

is considered for the solution. We have used a sequence of three meshes of triangular elements

containing 1271, 4941, and 19481 nodes, respectively, to discretize to computational domain. The

medium and fine meshes are obtained by uniformly subdividing the coarse mesh. Figure 4 shows a

detail of the medium size mesh near the cylinder.

In the first test, we consider the SUPG algorithm (18), with the standard choice of r given by

(22) for p = 1, and solve for the flow about the cylinder on the coarse mesh for free stream Mach

numbers of 0.38, 0.1 and 0.01. Figure 5 shows the pressure contours for the three solutions. The

degradation in tile solution accuracy when the Mach number is reduced is clearly apparent. We

could not obtain any numerical solutions below a free stream Mach number of 0.01, and for this

Math number, the iteration wouht only converge if a damped Newton-Raphson iteration was used.

For comparison purposes, we show in figure 6 the pressure contours obtained, for the same flow

conditions and mesh, when the proposed form of'r, given in (35), is used. No qualitative degradation

of tile solution is observed and in fact, we observe that, the solutions for Mach numbers of 0.1 and

0.01 look ahnost identical, as expected.

In the second test, we perform a mesh convergence analysis at various Mach numbers. Figure

(7) shows the Mach number contours computed on the coarse, medium and fine mesh for a frec

stream Mach mlmber of 0.38. Analogous results, but now for a Math mnnber of 0.001 are shown in

figure (8). The qualitative behavior of the solution, at both Math numbers, does not present any

anomalies. IIL figure (9), a plot of the solution error norm versus grid size is shown. Here, solutions

at Math mlmbers of 0.38, 0.01, and 0.001 are compared and second order convergence is observed

in all cases, showing no deterioration in the convergence rate as the Mach number is reduced. The

norm of the solution error considered was [fft(V - Vh)A0(V -- Vh)da] 1/2, where V, is a reference

solution computed using a quadratic approximation on a highly refined grid of 77361 nodes [27].

3.7.2 Example 2: Flow over an airfoil

In this example, the proposed scheme was used to sinmlate tile flow over NACA 0012 airfoil at

Mad_ numbers of 0.01 and 0.6, and at an angle of attack of 2°. An unstructured triangular mesh

of 19948 nodes was used for the simulation. Figure 10 shows a coarser mesh from which the
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19948nodemesh(:anbeobtainedby uniformly subdividingeachek'mentinto four elements.Tile

computedMath numberandpressurecontoursfor thetwo flowconditionsareshownill figures11

and12,respectively.Thequalitativebehaviorof thesolutionlooksexcellent,andagain,nosolution

accuracyor numericalanomaliesareobservedwhenvery low Machnumberflowsareconsidered.

Figure4: Detail of the medium size mesh used for computations

4 High Order Finite Element Discretization of the Compressible

Euler and Navier-Stokes Equations

This section centers upon a high-order accurate, stabilized, finite element method for the numerical

solution of the compressible Euler and Navier-Stokes equations. The SUPG finite element method

for compressible flow simulations was initially developed and analyzed by Hughes et al. [15, 16,

14, 21] and has since gained significant popularity. Its relation to multidimensional upwinding was

elucidated in [29, 30] and higher order implementations for inviscid flows were presented in [3].

In [2], the SUPG algorithm was cxtentded to cover the sinmlation of near-incompressible flows

by employing a stabilization matrix which exhibits proper scaling over the entire range of Math

numbers. Here, we focus on the higher order implementation of the algorithm developed in [2] for

invicid and viscous flows.
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Figure 5: Static pressure contours computed on the coarse mesh using the SUPG algorithm with

the standard choice of stabilization matrix given by (22), for a free stream Mach number of a) 0.01,

b) 0.1, and c) 0.38.
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Figure 6: Static pressure contours computed on the coarse mesh using the SUPG algorithm with

the proposed choice of stabilization matrix given by (35), for a free stream Mach number of a) 0.01,

b) 0.1, and c) 0.38.
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Figure 7: Math contours for a free stream Mach number of 0.38 computed on the : a) coarse., b)

medium, and c) fine meshes.
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Figure 8: Mach contours for a free stream Mach nmnber of 0.001 computed on tile : a) coarse, b)

medium, and c) fine meshes.
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Figure 9: Grid convergence plot showing tile solution error norm versus tile grid size parameter

using the proposed algorithm and for free stream Mach nmnbcrs of 0.001, 0.01 and 0.38.

Figure 10: Detail of tile unstructured triangular the mesh used for the airfoil computations
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Figure 11" Mach number contours for the solution of the flow over NACA 0012 at an angle of attack

of 2 ° for a free stream Math mnnber of : a) 0.01, and b) 0.6.
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Figure 12: Static pressure contours for the solution of the flow over NACA 0012 at an angle of

attack of 2 ° for a free stream Mach number of : a) 0.01, and 17) 0.6.
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4.1 Compressible flow governing equations

Westart fl'(nnthe time dependenttwo dimensionalcompressibleEulerequationsin conservation

forlll

U,t + (F - F")_,j + (F - F")2,2 = 0, (36)

where

and

p -

pul I

U= 1, F_=
pu2

ro?l I

pul2 + p

pu I ?z2

u l(pE + p)

, F2 =

,01L2

p'_tl lt2

pu? 2 + p

u2(pE + p)

Fy=

0

T11

T_2

I _ITI1 Jr- IL2TI2 -{- ql

0

721

r22

?*1T21 + U2T22 Jr- q2

In the above expressions, p is the density; u = [ul, U2] T is the velocity vector; E is the specific,

total energy; p is the pressure; and the comma denotes partial differentiation (e.g. U¢ = 0U/0t,

the partial derivative with respect to time, Fi, j =- OFi/O2:j, the partial derivative with respect

to the j-th spatial coordinate). The system of equations is closed once the pressure is related to

the problem variables through the equation of state, p = (7- 1)pc, where e = E - 1u]2/2, is the

internal energy. Here, 7 is the ratio of specific heats and It is the absohlte viscosity, both of which

are assumed to be constant. Following the usual assumptions:

,,o,,, 2,, (0., 0,,,)
rll = 2Re Oxl 3 Re \Oxl + Ox2}

r12 = r21 = -_e \ Ox2 + Oeq ]

and

T22 = 2 Re Ox 2 3Re \ OxI + Ox2 /

IZ 07' # 07'
= -- , q2 = - RePr" Ox2"ql RePr Oxl
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Wewill assumethat all theabovequantitieshavebeennon-dimensionalizedusingreference,or flee

stream,valuesfor densityp., velocity u., and length L. Tlms, the dimensional variables, denoted

with an overbar, are related to tile non-dimensional va.riables introduced above Ks

_i # L_ # _i u. i
/5 ui=--, i= 1,2, p p.u2 * E= _, # xi=-- i= 1,2, and tP p, u, z, t** L = L--"

We note that the equation system (36) can be written as

U,t + AiU,_ + A2U,2 = (K11U,1),l + (K12U,2),l + (K21U,1),2 + (K22U,2),2, (37)

where the Jacobian matrices Ai = Fi,u, i = 1,2, are unsymmetric but have real eigenvalues and a

complete set of eigenvectors. Kij = F_(,U a are the viscous flux jacobians. The above equation may

be symmetrized through a change of variables, for details, we refer the reader to [14, 13].

4.2 Variational formulation for the steady state problem

We now consider the compressible steady problem in conservation form expressed in terms of

symmetrizing variables. The conservative form of the equations is taken to be the starting point

because we are ultimately interested in an algorithm that can be used over the whole range of

speed regimes, including situations were the solution may contain discontinuitites. The problem is

defined in a domain _ with boundary F by

(F+FV)t(V),I+(F+FV)2(V)a=0 in _,

A_V=.&_g on r\Pa,

F v. n = f on Fa

(38)

(39)

(40)

For simplicity, the domain boundary is assmned to be made up of a solid wall I'_, and a computa-

tional far field boundary F\Fa. In (39, 40), n -- In1, n2] T is the outward unit normal vector to F,

and ._.,_ = A,,A0, A,_ = Alnl + A2n2. Finally, _&g = AgA0, and A_ denotes the negative definite

part of A,,.

Let the spatial domain Ct, be discretized into non-overlapping elements Te, such that f_ = U T_,

and T_ ["]Te, = _, e ¢ e'. We consider the space of functions Vh, defined over the discretization and

consisting of the continuous flmctions which are piecewise linear over each element

= {w IW 4, wlw c 4, VT , c
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The SUPGalgorithmcanthenbe writtenas: Find Vh CV 1' such that fi)r all W C V h,

B (Vh, W)g(z/-l- B (Vh, W)supg @ B(Vh, W)b c = 0, (41)

where the forms B(-,-)gat, B(-,-)_,pg and B(-, ")be account for the Calm'kin, SUPG stabilization,

and boundary condition terms respectively, and are defined ;ks

= f(-W,1 -(F - F")l (V) - W_. (F - F%(V)) ,tfi,B(V,W)gat
Jf_

and

(,12)

/,

B(V,W)s,pg = ]¢ (.iqW,1 + J.2Wa) - r (-_.lV,t + ._k2V,2 -- (KllV,1),I - (K_2V,2),l -{43)

(K21V,1),2 - (K22V,2),2) dQ,

B(V,W)bc=_ W.(Ffl+Fv)(V,g;n)d.s.+fr W - Fv(V, f; n) ds. (44)

where r is the stabilization matrix. The numerical flux flmction on the far field boundary FII , is

defined by

FI/(V_,V+;n) = _(Fn(V_)+ Fn(V+))- _la,,(V*(V_,V+))I(V_ - V_).

tterc, Ii,_(V)l = A+(V) - A-(V) is the absolute value of A,, evaluated at V*, and V*(V+,V ),

is the an average between the states V + and V-. Tlre average state, V*, is chosen to ensure

the global stability of the algorithm [3]. The acquisition of V* requires iteration and in practice

an arithmetic average may be used. The Roe flux [20] was used in all the numerical sinmlations

presented herein. For inviscid compuations, the viscous terms in tire expressions above would of

course, vanish. For viscous simulations, Dirichlet boundary conditions may replace portions of the

boundary integral.

4.3 Numerical results

In this section we present some numerical results that illustrate the performance of the proposed

algorithm. Test problems were solved employing both linear and quadratic element approximations.

For comparative purposes, the meshes used for all linear element approximations were obtained by

subdividing each element of the corresponding quadratic element mesh into four linear elements.

In this way, comparisons between P1 and 1:'2 solutions involving the same number of nodes can

be made. he thus represents the distance between two nodes in the meshes used in the numerical

simulations presented herein.
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4.3.1 Example 1: Rinleb flow

In this example,weconsidera ringleb test case(anexactsolutionof the Eu]erequations,[28]).

Tile error iseomtmtedin theL_ entropy norm [2]. Both Pl and P._ element approximation achieved

their respective optimal convergence rate of O(h 2) and O(h 3) respectively, as call be seen in figure

13.

4.3.2 Example 2: Flow over an airfoil

In this example, tile proposed scheme was used to simulate the flow over NACA 0012 airfoil at a

Mach number of 0.6, and at an angle of attack of 2°. In figure 14, the L2 entropy deviation for

both PI and P2 simulations arc presented. The quadratic element approximation results in a much

lower level of entropy error than its linear element counterpart. The geometric singularity at the

trailing edge of the airfoil requires a much finer discretization around that point relative to the

rest of the mesh for both the linear and quadratic element approximations to achieve their optimal

convegence rate. This is particularly important for the P2 approximation since the error away from

tile geometric singularity vanishes far quicker, rendering the trailing edge error as the dominant

source of error for the numerical approximation. Figure 15, shows the computed Math contours

for the Pl and P'2 simulations.

4.3.3 Example 3: Flow over flat plate

In this example, we consider flow over a flat plate of unit length. The computational domain is

[-1.5, 1] x [0, t], with the leading edge of the plate at (0, 0). The free stream Mach number is 0.5.

The Reynolds number is raised from 8000 to 64000 in successive sinmlations while keeping the mesh

unchanged. The results in the form of boundary layer thickness, g99(x = L), are plotted in figure 16.

The quadratic element approximation yields results very close to that of the Bla.sius solution while

the linear element approximation shows increasing error with rising Reynolds number. Further

numerical tests have shown that it is possible to resolve the Blasius boundary layer with only two

elements when quadratic element approximation is used.

4.3.4 Example 4: Transonic computations

Here we show the application of the algorithm proposed using P2 interpolations to the inviscid

computation of the transonic flow over a NACA0012 airfi>il at a math number of 0.8 and and angle
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of attack of 1.2° (tegrees 17. The shock capturing term employed is that reported in [3]. This

results are only preliminary but illustrate the ability of the high order finite element algorithm to

capture shocks.

5 An Algebraic Multigrid Method for Convection-Difsusion Flows

Rapid advances in unstructured mesh methods for computational fluid dynamics (CFD) have been

made in recent ),ears and, for the computation of inviscid flows, have achieved a considerable level

of maturity. Viscous flow technology is also rapidly developing and the use of unstructured grids

has been indispensat)le. Unstructured meshes offer a practical means for computation and have

the advantages that they provide both flexible approximations of the domain geometry and easy

adal)tation/refinement of the mesh.

Accurate and efficient solutions to the compressible Navier-Stokes equations, especially in the

turbulent high Reynolds number limit, remains one of the most challenging problems due to the

myriad of associated length scales required to properly resolve flow features. This is especially

true in the boundary layer regions where severe grid anisotropy is required. Diseretization of the

partial differential equations on the mesh gives rise to a large linear system of equations. For 3D

problems, these large discrete problems often cannot be solved using direct solution methods. As

a result, iterative solution methods based on Krylov subspace methods and/or nmltilevel methods,

which include nmltigrid and domain decomposition methods, are attractive. Multilevel methods

can often provide mesh independent convergence rates [32] and offer good scaling of the compute

time as well as (tara storage requirements. In the typical context, lnultilevel methods are not used

as solvers but as preconditioners for Krylov subspace iterative solvers. This provides a powerfid

and flexible framework for computation.

There are two major problems associated with AMG for the solution of convection diffusion

flows. The first is the definition of accurate coarse spaces in the multilevel construction. This

is required to properly capture the behaviour of the discretized equations on these coarse spaces.

The second problem is the behaviour of the smoothing operators with high Reynolds number

and anisotropic effects. These two effects are typically the leading causes of convergence rate

deterioration.

In this section, we present a multigrid methodology for the solution of convection-diffusion based

problems, especially in the finite element context. The target application for this algorithm is high
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Figure 13: Top: L2 entropy norm error of ringleb flow solution, Bottom: Comt)utational mesh.
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Figure 14: Top: L2 entropy error of flow over NACA 0012 airfoil, Bottom: Computational inesh.
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Figure 15: Mach contour of flow over NACA 0012 airfoil, 3.4_ = 0.6, o_= 2°
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Figure 17: Computed Math contours for the flow about a NACA0012 airfoil at M = 0.8 and

c_ = 1.25 ° value of boundary layer thickness at x = 1, .
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Reynoldsnumt)erNavier-Stokesflows.

5.1 Model problem

Themodelproblemconsid_redis the linearconvectiondiffusionproblem

U. V¢ = l_V_¢+ f in f2, (,15)

¢ = aN on O_-_D, (46)

o¢
- aN on 0ftN, (47)

071

where _ is a bounded domain in _" (n = 1,2, 3) with boundary 0f_, and U = (Ul,.. •, U,_) is an

incompressible prescribed velocity field. Tile finite element discretization is based on the stabilized

SUPG formulation analogous to that described in the previous sections. Introducing the variational

form of Eq. 45, the problem reduces to finding ¢ C H_(fl; 0f_D) such that

a(¢, v) = F(v) (48)

where

f f

a(qS; v)

F(v) = .f_ f_dx (50)

i? = v + _-U. Vv (51)

H_)(ft; (.0_D) is the Sobolev space which contains functions that vanish on OFtD with square

integrable first derivatives, _ is the stabilized SUPG test flmction and r is the SUPG stabilization

parameter. The discretization of the problem is done by covering f_ with non-overlapping finite

elements through a triangulation and defining standard linear basis functions over these elements.

The discrete problem now reduces to:

Find Ch E Vh such that

vh) = F( h) W'h C Vh (52)

where Vh is the finite dimensional subspace of H_(l_; O['_D) consisting of continuous functions which

are linear over the elements. This results in a system of linear equations

A¢ = b (53)
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whichneedto besolvedfor the discretesolution(Ph-

In oMer to obtain accurate results which provide detailed resolution of the flow field, a well

resolved mesh is required which gives rise to a large linear system. In general, iterative methods give

very good performance when the underlying matrix A is symmetric and positive definite (SPD).

However, the resulting matrices from the discretization of convection-diffusion problems are not

SPD. This is usually due to the anisotropic stiffness introduced in the system of equations through

the grid and the convective nature of the system.

Here, the development of a nmltilevel methodology based on algebraic multigrid is discussed.

Multigrid has shown great promise in the solution of linear algebraic systems and can be shown

to have mesh independent convergence for a wide range of problems. Iterative schemes remove

certain types of errors, typically high frequency (rough) errors but are unable to damp out the

low fi'equency (smooth) components. Multigrid may be used in conjunction with these iterative

schemes to form a powerfifl solver by removing these smooth error components. Representation of

these smooth errors on the multigrid coarse spaces means that they appear rough on these spaces

where they may be damped out effectively.

The construction of these coarse spaces may be done in several ways and the most obvious

one is to simply rctriangulate the domain with a larger mesh spacing. This however is a very

expensive procedure especially for meshes required for Navier-Stokes simulations which can have

very complex geometries. These methods are termed Geometric Multigrid (GM) and they make fifil

use of geometry. Another way is by nodal decimation which involves selection of a vertex subset and

retriangulation. The selection process is typically based on fine grid geometry and depends on some

pattern in the fine grid [33]. Depending on the pattern, different coarsenings arise. Calculations in

the inviscid regions of the mesh use a full coarsening technique which gives a 4:1 reduction in 2D,

an example of which is given in Fig. 18(a). However, alleviation of the stiffness due to stretched

grids in viscous flow calculations requires semi-coarsening [34] which gives a smaller reduction. We

refer to [35] for other references on this.

In contrast to geometric multigrid, another promising avenue is Algebraic Multigrid (AMG)

which uses an algebraic definition for the coarse spaces by agglomeration of the finite element

subspace on the fine grid [36]. A purely algebraic definition allows for automatic construction of

the coarse spaces and does not require geometric infi)rmation. However, the smoother and the

coarsening algorithms need to bc carefully matched. The aggh)meration technique is typically

nodal [37, 38, 39, 40] which results in the Additive Correction Multigrid (ACM) method. However,
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(a)VertexAgglomeration (b)ElementAgglomeration

Figure18: AgglomerationTypes

anothereffectivemethod is through elementalagglomerationwhich involvestile agglomeration

of neighbouringelementsinto macroelementsasshownin Fig. 18(b). Hence,the coarsespace

elementsarenot standardelementsandassuch,the coarsespacemeshesarenot propermeshes.

Appropriatebasisfunctionsaswellastransferoperatorsneedto defined.Perhapsthemostrecent

developmentin thisareais by Chanet al [35, 32] and the results have been shown to be promising.

This coarsening technique is based on the m_deriying graph of the fine grid and does not involve

geometry. The technique produces a set of node-nested coarse spaces which can be retriangulated

based on fixed patterns in the agglomerated macroelement. This method offers great potential

since the proposed interpolation operators are based on integers and leads to savings in storage and

CPU time. Also, the algorithm recovers the natural structure of the coarse grids if the fine grid

is regular. However, since the algorithm is purely topology-based, it does not distinguish between

anisotropic and isotropic mesh regions which may lead to decreased convergence of the multigrid

procedure. We. propose a new and simple technique for defining coarse spaces which are properly

nested in both the elemental and nodal sense. This method represents a hybrid between geometric

and algebraic multigrid.
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5.2 Multigrid Principles

5.2.1 Multigrid Requirements

In order to solve the linear system Eq. 53 using multigrid, the definition of the coarse spaces ,an

well as the representation of the error components on these coarse spaces must be defined. Let

{qJk : (k = 0,..., Ill)} represent the hierarchy of finite dimensional coarse spaces along with the

associated coarse grids. Also, let {Ak : (k = 0,...,m)} be the approximations of A on these

subspaces such that Ao = A. In order to represent the error in one space on the next coarse space,

we require a transfer operator called the restriction

Rk : @k --_ qJk+l (54)

which acts a_s a mapping between these spaces through a reduction in the space dimension. Also,

error correction on the fine space from the coarse space requires the transfer operator called the

prolongation

Pk: _k_ qJk 1 (55)

which acts as a reverse mapping. To complete the picture, we require a smoothing operator Sk

which acts to reduce the rough error components on each subspace ffJk. These smoothers may be

different on each grid but are typically ct_osen to be the same e.g Gaug-Seidel . The generalized

nmltigrid cycle now reduces to

1. Perform ul pre-smoothing sweeps on the fine grid.

_k = (/_-1 jr_ Sk(b k _ Ak4_k ') (P = 1,...,/_1)

2. Restrict the equation residual from the fine grid to the coarse grid.

bk+l = Rk(bk -- AkCk,pre)

3. Solve on coarse grid and compute the coarse grid correction.

Ck÷l = A;+lbk+l

4. Prolong the correction back to the fine grid from the coarse grid.

q_k,corrected : C/)k,prc _- P k_)k + l
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5. PerformlJ_post-smoothingsweepson the finegrid.

¢°k = 4'k, oTT , t,d

N = + Sk(t,k- (p= 1, ..,,,2)

Depending on the scheduling of operations between the spaces, we end up with different flavors

of multigrid cycles such as the V-cycle, W-cycle and F-cycle ([41]). In the algebraic nmltigrid

context, the coarse grid approximations Ak to A are defined using the formula

Ak+l = RkAkPk (56)

In our implementation of multigrid, the coarsening procedure terlninates when the coarse grid

operator A,. is small enough to solve exactly.

5.2.2 Galerkin Form for Transfer Operators

While the restriction and prolongation operators are independent, a Galerkin form of these opera-

tors requires that

Rk = pT

Given the fact that a correction from the coarse space is required to remove the smooth error

components fl'om the fine space, it is natural to seek the best possible correction. Let Ck+l represent

the correction from the coarse grid and Ck the current solution on the fine grid. The error in the

solution after correction is thus

ek = qSk+ PkCk+l -- Ak-lbk

Let us measure the error in the A-norm, I1' IIAand minimize the error:

minF(¢k+l) = minll(¢k+PkCk+l)--Aklbk IIA (57)
(_k+l _k+l

= min(¢k + PkCk+l -- Aklbk)rAk(¢k + PkCk+l -- Ak-lbk)
_k+ 1

Differentiation of the quadratic form with respect to ¢k+1 gives

T (58)P[(Ak + Ak)(¢k + PkCk+l -- A;Ibk) = 0

For a symmetric matrix Ak, we may easily solve for ¢k+1 and obtain

¢k+1 = (P_AkPk)_P[(bk- AkCk) (59)
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Furtherexaminationof the Hessianshowsthat this is a minimum. Comparingthis formulato the

A k in Eq. 56, we find that

Ilk = pT (60)

where the restriction is nov," defined as the fi)rmal adjoint of the prolongation:

Rk = P_ (61)

Tile same argument cannot be made for a non-symmetric matrix since the use of symmetry in

the proof may not be used any longer. However, it can be seen that even in this case, Eq. 59

corresponds to a stationary point but no information may be gleaned from the Hessian. ttowever,

if we measure tile error in the residual in the L2-norm and follow a similar proof, we again come

to the same result as Eq. 60.

5.2.3 Fixed Point Iterative Methods

Let us consider a splitting of the matrix A in the following form:

Ak = Mk - Nk (62)

where Mk is non-singular. The basic idea behind preconditioning is to obtain a matrix Mk such

that Mk _ Ak and inversion of Mk is much less expensive than Ak. A basic iterative method is

defined m_ the following linear fixed-point iteration:

¢_+1 _ Mkl i M_lbk-- NkCk +

= ¢_ + Mkl(bk - Ak¢_)

(63)

The matrix Mk is known as the preconditioning matrix and matrix Sk = MklNk = I - MklAk is

called the iteration matrix or smoother. Damping may also be taken into account by defining:

• 1

¢k+5 = Sk¢_ + Mk'bk (64)
1

,z+_ i= k (65)

* i (66)= Sk¢ k + WMklbk

where

S2: = coSk + (1 - w)I (67)

44



Fora givencoarsespace,let theexactsolutionbe Ckand theerror in tile solutionbe

i = ¢_,- Cke¢ k

This error is controlled 1)y Sk in the following fashion:

ei41
_k = G+' - Ck

= skeet + Mklbk - ICk

= SkqS_ + Mk_AkCk -- ICk

= skew- skck

= Ske_k

{68)

(69)

The convergence property of the iterative method (63) can t)e summed up in the well known result:

Theorem 1 Convergence of (63) for any initial guess u ° is equivalent to

p(S_) < 1 (70)

5.2.4 Multigrid as a Fixed Point Method

Multigrid may also be thought of as a fixed point method and this can be shown fairly easily for

the V-cycle multigrid cycle. We consider the general V(ul, u,)) cycle for the two-level method but

simplify it by assuming that we have only one pre-smoothing and one post-smoothing i.e a V(1,1)

cycle. Let A represent the fine grid matrix and /_. represent the coarse grid matrix. For an initial

guess ¢(0) = 0:

1. Pre-smoothing: ¢0)= Srb

2. Coarse grid correction:

(a) Restrict residual:

q(0) = R(I - AsT)b

q(t) = .i --IR(I _ AST)b

(b) Coarse grid solve:
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(c) Finegrid c<)rrection:

3. Post-smoothing:

¢(2) = ¢0) + RTq(I)

= [ST + RT___IR(I - ASV)]b

M-lb = 4)(2)+S(b-A¢ (2))

= [S + S T - SAS T + (I- SA)RT.A-tR(I - isT)]b

The multigrid iteration matix Smultigri d now takes the form:

Smultigri d _- I_ M-1A

= (I - SA)(I - RTA.-'RA)(I - STA)

For the extension to multiple levels and variable number of pre- and post-smoothing sweeps, we

refer to [32].

5.2.5 Convergence Conditions

In order to obtain mesh independent convergence properties, certain conditions must be met by

tile transfer operators. The definition of the subspace q_k is obtained by interpolation in _bk-1,

and according to the analysis in [32], these subspaces must satisfy stability and approximation

properties to ensure convergence of Eq. 63. These properties are:

IlRaull,,_ _< Cllulll, , (stability)

I1Rku- utI0,_ _ ChllUlll,_Z (approximation)

(71)

Vu C H 1(12) (72)

and as note(t, special care must be taken in defining Rk. Another condition as outlined in [41] is

my + mR > 2m (73)

where the orders mR, mR of Pk and Rk are defined as the order (degree plus one) of the polynomials

that are interpolated exactly by Pk and Re, and 2m is the order of the governing partial differential

equation.

The use of nodal agglomeration in ACM to construct the subspaces results in the definition of

the restriction as an injection operator. This h_ several associated problems. The first is that in

3D, this operator violates the stability property (71) ([32]). Secondly, both mp and mR are unity

and for the Laplacian operator (2m = 2), the accuracy condition (73) is violated ([41]).
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5.3 Agglomerated Coarse Space

In this section,wenowdescribethe constructionof the coarsespacesaswellascoarsespacebasis

functionsand multigrid operators.Our goalsin tile agglomerationand associatedconstruction of

the coarse space basis functions are:

1. The coarse grid matrix Ak defined on tlle coarse grid should be a good approximation to the

fine grid matrix A0.

2. Tlle coarse grid should have a reduction of anisotropic effects from previous coarse spaces.

The proposed algorithm is based on the filsion of coarse space elements into macroelements with

subsequent definitions of the coarse grid topology and basis functions. This method is applied

recursively to generate the hierarchy of coarse spaces. One essential difference between this method

and that proposed by Chan et al is that the coarse mesh elements are not converted into stan-

dard elements by a retriangulation but are generalized polygons formed by the agglomerated fine

mesh elements. This is especially attractive in 3D because of the complicated rules which may be

involved for the retriangulation method described in [35]. Although the support for the basis time-

tions defined on these macroelements is larger than standard triangular elements, a well designed

agglomeration should relieve some of this. This algorithm also has the feature that the resulting

coarse grid topology is both node-nested and element-nested.

5.3.1 Coarse Space Topology

The coarse grid topology is constructed by partitioning of the elements into macroelement groups

as shown in Fig. 19. A macroedge is defined to be the ordered collection of fine grid edges which

are shared by two neighboring macroelements. To complete the definition of tile coarse grid graph,

the coarse nodes are chosen to be the fine grid nodes where three or more macroedges meet. This

is the reverse of what is described by Chan et al where the coarse grid points are first defined and

then tile macroelements are chosen.

Two different element partitioning algorithms have been developed and both are similar in the

sense that they are based on elemental accretion across edges using some measure of the coupling

strength of the vertices making up that edge. They however differ in that one tries to alleviate grid

anisotropy while the other typically introduces grid anisotropy in regions of stiff matrix coefficients.

The second algorithm is based on a semi-coarsening algorithm using the sul)space matrix as the
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Figure 19: Coarse Space Topology

control parameter while tlle first is a reduced-geometry based algorithm which attempts to alleviate

stiffness in regions of highly stretched grids.

Matrix Based Agglomeration

The matrix based algorithm has its origins in the pure AMG implementation of the ACM

algorithm, ttowever, modifications are required in order to apply this to element agglomeration

as opposed to vertex agglomeration which it is was originally designed for ([38]. The basic idea

is that strong matrix coupling between vertices in tile graph of the mesh typically corresponds to

a weak coupling between tile vertices in the dual graph. The strength of tile coupling is typically

based on the stencil coefficients of tile matrix. We will describe later, the implemented definition

of the vertex conpling strength in relation to the development of the implicit line solver. Since the

dual graph vertices correspond to the elements, agglomeration of elements across edges with weakly

coupled vertices is equivalent to directional agglomeration of strongly coupled vertices.

Using this principle, we may now develop an algorithm which directionally clusters elements

in order to relieve stiffness in the next coarse space. The accretion is performed with a Breadth

First Search (BFS)/Greedy algorithm which maintains a queue of elements sorted according to the

relative coupling strengths of the vertices on their bounding edges. We now present the algorithm

in detail:

Algorithm 1 (Matrix Based Macroclcmcr_t Construction)
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Figure 20: Matrix Based Agglomeration in Boundary Layer

Step O: Consider the graph of the mesh: G = (V,E) and calculate the coupling strengths for the

edges E in the graph.

Step 1: Seed element procurement. Obtain a seed element to initialize the BFS algorithm. If

there is no seed element in the queue, choose any suitable element which does not belong to a

macroelement group.

Step 2: Perform accretion around the seed element by recursively considering the neighbouring

elements.

Step 3: Repeat Step 2 until the macroelement has desired number of elements or heap contains

no more elements.

Step 4: If the number of elements agglomerated is less than a specified fi'action of the desired

number of elements (usually ½), these agglomerated elements are ungrouped and the original

seed element is marked.

Step 5: Repeat Step 1 until all elements either belong a macroelement or has been marked as an

invalid seed.

In Step 2 above, a heap is maintained whose members contains a key pair consisting of element

and face identifiers. Initially, seed element is placed on the heap. The head of the seed is then

popped for the current seed element and added to the maeroelement list.. For every neighbor
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of tile poppedelementwhi(:hdoesnot belongto a macroelement,the connectionstrengthof the

separatingedgeischecked.If theedgeisconsideredto beweak,the neighboringelementis inserted

into the macro(_lement.For everynewly insertedelement,the neighborswhichdo belongto any

macroelementareconsideredandthecorrespondingelement/edgekeyidentifierpair is insertedinto

the the heapaccordingto the e(lgcconnectionstrength.

After thealgorithmterminates,post-processingis necessaryto dealwith exceptionswhichmay

arise.Thesearedes(:ribedbelow:

(1) Elements not in any macroelement: Elementswhicharemarkedasinvalidseedsmildhave

not beenabsorbedinto a macroelementwill end up as loneelements.Theseelementsare

mergedwith the neighboringelcment/macroelementthat sharesthe edgewith the weakest

connectivity.

(2) Insufficient number of elements: After exception1 above,a macroelementmay end up

with an insufflcicntnumberof agglomeratedelements. The macroelementis divided up

amongstneighboringmacroelementsby erosionof the boundaryelementsuntil there arc

no moreelements. The decisionas to wherean elementgoesis alsobasedon the edge

connectivity.

(3) Insufficient number of coarse nodes: A macroelcmentmayalsoendup with two or less

coarsegrid nodeswhich presentsa problemin the constructionof the transferoperators.

Thesemacroelementsarealsodividedupamongstneighboringmacroelcments.

This algorithm is closelytied to the line solverandcanbeparticularly effectivefor equations

with stronglypreferentialdirections.Extensionto 3Dwouldbestraightforwardif a suitable"face"

connectivitycanbedefined.If theconnectionstrengthfor all edgesisdefinedto bca constant,then

an isotropicagglomerationalgorithmisrecovered.Unfortunately,sincetherewill benopreferential

direction,thereisno realcontrolin theregularityof thecoarsegrid andselfsimilarmeshescannot

bc obtainedfor structured,topologicallyrectangularmeshes.

Geometry Based Agglomeration

The geometry based algorithm is based on the idea of removing grid anisotropy as well as

maintaining isotropy in the isotropic regions of the mesh. This is related to the work done by

Mavriplis [34, :12] except that it is applied to elements as opposed to vertices. The proposed

algorithm makes use of the edge lengths only and this represents a reduced geometry method. The
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reducedgeometryfiw the lowerlevelcoarsespacesis definedentirely ill termsof the finegrid i.e

the macroedgelengthsaresimply the sumof tile edgelengthsof the constitutingfinegrid edges.

The decisionto agglomeratetwo neighboringelementsisbasedon a geometrybasedconnectivity

conceptwhichwe term maeroclementskew.

Definition 1 For a general polygon, the polygon skew is a measure of anisotropy and is defined as

the area of the n-gon divided by the area of a perfect n-gon with the same perimeter.

In tile extreme cases, this is zero for colinear polygon vertices and unity fi)r a perfect ll-gon. It can

be seen that this readily extends to 3D. The macroelemental areas for the coarse spaces are also

easy to compute as they are simply sums of the aggloineratedelement areas. This makes it easy to

apply tile algorithm recursively once the required geometry variables have been computed on the

finest mesh. In order to complete the operators required for this algorithm, we need to define the

edge connection strength which we term edge skew.

Definition 2 For an element which borders a macroelement/element on a given edge, edge skew

is defined as the macroclement skew of the macroelement which would be created if the element is

merged with the macroelemcnt/element across that edge.

We now present the algorithm in detail:

Algorithm 2 (Geometry Based Macroelement Construction)

Step 0: Consider" the graph of the mesh: G = (V,E) and calculate the edge length for the edges E

in the graph.

Step 1: Initialize seed queue.

Step 2: Seed element procurement. Obtain a seed element to initialize the algorithm. If there

is no seed element in the queue, choose any suitable element which does not belon 9 to a

macroelement group.

Step 3: Per'form accretion around the seed element. Place seed element in macroelement and for

every neighboring element, compute the edge skew. Every neighboring element which has an

edge skew larger than some specified fraction (typically O.75) of the average edge skew and not

in a macroclement is placed in the macroelcment.
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Step 4: Enq_teuc seed elements. New seed elements are placed in the queue to continue the aOo-

rithm. These arc chosen to be elements which share a vertex but no edges with the macroele-

ment. In 2D, this would cztcnd to eleme_tt.s which .share a vertex and/or an cdgc but no faces

with the macroelement.

Step 5: Repeat Step 1 'until all elements either belong a maeroelement or there are no more seed

elements.

A queue of seed elements needs to be maintained and hence in Step 1 above, this is initialized

with one element. This initial choice can be very important especially in cases of unstructured

meshes genera t_d from structured data. In such a case, the agglomeration pattern may radically

depart from a 4:1 agglomeration in 2D since the accretion algorithm will not properly identify

potential elements. In this case, simply pick an element with no domain boundary edges.

After the algorithm terminates, post-processing is necessary to deal with "sliver" elements which

may not have been picked up by the algorithm. A determination of which macroelement to merge

these elements with is made a-priori bmsed on edge skew. In the case where the lengths and areas

are equal, the algorithm degenerates to a 4:1 isotropic agglomeration in 2D and flflly recovers the

natural coarse structure for a regular grid.

!

(a) Matrix Based Agglomeration (b) Geometry Based Agglomeration

Figure 21: Resultant Agglomerations Based on Different Agglomeration Algorithms
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Fig. 21showstile difference between the two algorithms in tile case of a cosine Ni Bump with

9600 elements and 4961 w'rtices The underlying geometry is generate<t from structured data and

the geometry based algorithm nicely recovers the natural coarse grid.

5.3.2 Coarse Space Basis Functions

Tile transfer operators may now be defined based on the constructed macroelements. The GCA

formulation is in effect so it is suffi(:ient to construct the prolongation operator only. Wc would like

the basis fnnctions to at least satisfy the stability (71) and approximation (72) conditions, preserve

the constant fimction, and behave like standard interpolants i.e

t"

) 1 if i = j
'Ih(x_)

0 ifiCj

(74)

Tile construction of the proposed basis flmctions makes use of topology and reduced geometry

if provided. If the geometry is not given, then the elements are assumed to be isotropic. We now

define the basis functions using graph distance interpolation on both the boundary and interior. If

ttle geometry is available, this is used in combination to form a more accurate interpolant. This is

an improvement over tile interpolation proposed t)y Chan et al which makes use of graph distance

interpolation on the boundary and constant interpolation over the interior. This algorithm leads

to a quasi-linear interpolant as shown in Fig. 22. The detailed algorithm is given below:

(P0=0

(I)0= 1 (P0= 1/2 (P0=0

%=0

Coarse _

Oo=O Oo=O Oo=O

Figure 22: Coarse Space Basis Function Based on Graph Distance

Algorithm 3 (Basis Function Construction)
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Step 1: For each macroelement, create a local subgraph, ht the process, create an ordering of the

boundary edges such that the boundary can be traversed.

Step 2: Extract the list of interior vertices. Extract the ordered list of coarse grid vertices by

traversing the boundary edges.

Step 3: For all fine grid edge vertices which lie between consecutive coarse grid nodes, construct

length weighted interpolation data. The macroedge length is also computed simultaneously.

Step 4: hderior vertex interpolation. For each coarse grid nodc in the macroclcment, a BFS

itcration on thc local subgraph is performed with the coarse grid node as a seed. Both the

level set as well the distance from the coarse node is recorded for all interior nodes in the

subgraph during the process. The graph distance of each macroelcmcnt fine grid node from

the macroelement coarse grid nodes is then set. For each fine grid node, these distances are

then weighted to sum to unity.

5.3.3 Scaling Issues

The success of the nmltigrid methods depends heavily on how good of an approximation the coarse

space matrices Ak are to A. In the GCA formulation, special care must be taken to ensure that

that these approximations are accurate enough. The construction of the prolongation operator is

typically not a problem, tIowever, the definition of the restriction operator needs to be modified

slightly. Let us choose the restriction operator to be

Rk = aP_¢ (75)

where P_ is the formal adjoint of the prolongation an(] a is a suitable scaling factor. The scaling of

Rk is determined by the role of Rk. If Rk is to be used to construct coarse grid representations of Ck

(i.e RaCk), then _-_j Rk(i,j) = 1. However, ifR is to be used to transfer residuals to thc coarse grid,

then the correct value of the scaling depends on the scaling of the fine grid and coarse grid problems.

This implies that the coarse grid problem should bc consistent with the differential problem in the

same way as the fine grid problem. This is the basic problem with vertex agglomeration. Let H

represent a characteristic mesh size on the coarse grid arid h represent a characteristic length on

the fine grid. Finite volume and finite element schemes in 2D lead to a scaling rule which says that

_j Rk(i,j) = (__)2 which can be viewed as a ratio of the area associated with a coarse grid node

to the area associated with the counterpart fine grid nodc.
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The basisflm(:tionconstructionalgorithnl thusneedsto be modifiedto takethis into account.

Theassociatedareafor thenodesonboth thefineandcoarsegridsiscomputedby loopingthrough

the elementsoi1a grid and sendingelementalareacontributions(elementarea divided by the

numberof elementvertices)to thesevertices. The diagonalscalingmatrix (7is now computed.

ttowever,wewouhllike to maintaintheGCAfornmlation,sothesystemissymmetrizedbydefining

15 = Pa½ (76)

1 T1_ = c_se (77)

= 15r (78)

This formulation has the nice feature that the eigenstructure is preserved for an SPD matrix.

The coarse grid equations are now constructed using the GCA approximation and the multigrid

operation continues with this new definition for the transfer operators.

5.4 Implicit Line Smoother

In the context of our multigrid formulation, we would like to be able to solve the high Reynolds

number Navier-Stokes equations which is a parabolic system characterized by both advective and

acoustic modes. We would like to decouple the two modes in the following way. Multigrid methods

are very effective at damping out elliptic error modes such that the choice for the smoother must

be that it can handle the adveetive error components. Following this reasoning, we have opted

to use an implicit Gaug-Seidel line relaxation scheme where the lines are constructed to follow

characteristic directions. The use of a line relaxation schelne leads to a natural splitting of the

matrix into tridiagonal submatrices which may be solved by any of the myriad tridiagonal matrix

solvers. The general rule behind the line relaxation is that points which are strongly coupled should

be updated simultaneously. This leads to the description of how the implicit lines are constructed.

5.5 Implicit Line Construction

The implicit line construction process is based on the philosophy of linking strongly coupled nodes.

hi order to reduce the amount of work in the line smoother, minimal overlap between the lines is

allowed. To properly describe the algorithm, we need to define two terms:

1. Coupling measure: The coupling measure between two nodes gives a local quantification

of the connectivity between these nodes. Typically, this is based on the matrix stencil con-

necting these points. Ideally, the measure of the coupling between the nodes should be based
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on a discretizationof a scalarconvection-diffusionequation1)utothermeasuressuch,as an

approximation to the flow velocity or streamlines may be used. This becomes even more

complicated in the case of block systems of equations such as arise in discretizations of the

Navier-Stokes equations. It may however be possible to use entropy variables to form an

approximation of the scalar convection equation.

2. Coupling degree: The coupling degree between two nodes gives a quantification of the

connectivity 1)etween these nodes as compared to other connected nodes. This is based on

the coupling measure earlier define(t. In the current framework, the degree of coupling bctwccn

two nodes V1 and V2 is determined by first computing the coupling measure of the nodes to

all surrounding nodes and this measure may be freely defined. For each node, the maxinmm

wdue is taken to be the reference wdue for that node. From the point of view of V1, the

coupling between nodes V1 and V2 will be considered strong if the connectivity mea.sure

between these nodes is larger than a threshold value. This threshold value is defined to be

a fraction of the V1 reference value. Two nodes are linked up in the line if the degree of

coupling between them is stongcr than any other connection. In advection dominated flows,

strong coupling tends to be one-sided which is why a two way consideration (i.e from both

points of view of V1 and V2) is necessary.

Line construction is clone in a two pass process. The first pass involves the construction of

individual lines while the second pass involves merging lines to reduce the line count and improve

convergence. The construction of a single line begins by choosing a seed node. All nodes which

do not exist, in a line are placed in a queue in no particular order and the seed node is chosen

from this queue. The chosen seed is usually not an extremety of the line based on a straightforward

implementation of the algorithm. Hence, we need to introduce the concept of forward and backward

mode line construction.

5.5.1 Forward Mode Line Construction

Forward ino(te line construction involves stepping through a line by starting at a given node and

simply choosing the next node with the bcst strong connection which is not in the current line.

The best connection, however, may be a node which alrcady exists in another line. Hence, in an

effort to minimize overlap, the next best node which has a strong connection and has not bcen

assigned to a line is (:hosen. If no such node exists, then the originally selected node is chosen.
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If the numberof timesa nodewhichhasalreadybeenassignedto a line is chosenreachessome

predeterminedlimit, then the line is terminatedand the overlapnodesare removed.Also, if the

next chosennodeis anextremetyof anotherexistingline, then the current line is simply merged

with that line. Flowswith recirculationregionsor circular flowsgive rise to cyclic couplings,so

this caseisspeciallyhandledif the chosennodeturnsout to be theheadof the current line.

5.5.2 Backward Mode Line Construction

Backward mode line construction is akin to the reverse of the forward mode. For a given node, all

the adjoining nodes are scanned and a single step of the forward mode algorithm is performed on

these connected nodes. If any of these connected nodes would have chosen the starting node as the

next node in the line, then this node is chosen ms the next node. In the event that multiple nodes

would have chosen this node, then the one with the strongest coupling is chosen. As in the forward

mode, if the chosen node is an extremety of an existing line, then the current line is merged with

that line.

5.5.3 Line Processing

The line is constructed by performing backward and forward mode construction from the seed

point. After the two halves of the line have been constructed, they are merged together into a

single line. The post-processing pass is perfi)rmed once all the nodes have bcen assigned to reduce

the line count. This is done by checking the extremcties of every line and testing to see if the

node on the extremety has a strong connection to a node on the extremety of another line. The

connection threshold for each node is reduced by a factor (typically between 0.5 and 0.75) to allow

more lines to be considered.

Fig. 23 shows a 2-level example of the implicit line construction on the grids. The agglomeration

shown is the geometry based algorithm.
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(a) Level 0 Agglomeration (b) Level 0 Implicit Lines

(c) Level 1 Agglomeration (d) Level 1 Implicit Lines

Figure 23: Multilevel Agglomeration and Implicit Lines
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5.6 Results

Tile performanceof the algorithm for differentflow regimesand ('haracteristicsis nowpresented.

As mentionedby Chan([32]), theperformanceof manynumericaltechniquesfor elliptic prol)lems

arenot robust for convectiondominatedflows.Two particularkindsof flowswhichareknownto

causedivergencefor manytechniquesareboundarylayerflowsandrecirculatitmflows.

5.6.1 Boundary Layer Flow

Weconsiderthe linearconvectiondiffusionequation(Eq. 45)overa squaredomainft =]0,1[2 and

prescribedvelocityfieldU = (-y,x). Theforcingflmctionf is set to zero and the diri(:hlet bomMary

on the inflow and left wall (x = 0) is

5.0(x-0.2), for 0.2 < x _< 0.4, y = 0

1, fox" 0.4 < x <_ 0.6, y = 0
Ot D _---

1-5(x-0.6), for 0.6 < x <_ 0.8, y = 0

0, otherwise

This particular set of conditions is chosen to simulate a boundary layer flow with the nominal

Reynolds number

Uh • lh
w

1

1.]
(79)

Tile discretized domain is adapted on tile dirichlet boundary to capture the boundary layer as

shown in Fig. 23(a). All presented results are based on a V(1,1) multigrid cycle with no FMG.

The agglomeration technique is the geometry based algorithm and the solver is terminated when

the RMS absolute error in the residual is less than 10-13. The relaxation factor co chosen for all

the test cases was 0.95. The behaviour of the algorithms for a variety of parameter states is now

presente(t:

Multigrid Level Dependency:

The dependence of the convergence rate on the mlmber of coarse spaces is shown in Fig. 24. The

fine mesh has 60399 vertices and 119714 elements and a total of 6 coarse spaces were constructed.

In the asymptotic limit, the convergence rate is the same for all the curves and beyond the two-grid

case, the curves fall unto the same line.
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Reynold Number Dependency:

The dependence of the convergence rate on the. Reynolds number is shown in Fig. 25, Fig. 26

and Fig. 27 for a range of Reynolds numl)ers from 10 _ to 107. Figures 25 to 27 were generated

on a sequence of fine meshes with 3849, 15763 and 60399 vertices respectively which represents an

approximate halving of the mesh spacing. Ill all eases, we find a similar asymptotic convergence

rate. Even more important is tile fact that the algorithm works well for such a wide range of

Reynolds numbers while maintaining a fairly constant bound on the nmnber of iterations required

for convergence.

A noticeable trend can be observed with the Re = 100 c_se, which is the increasingly pronounced

stall in the residual after a few iterations followed by convergence. The problem is fairly elliptic

such that well defined characteristic lines are not easily identifiable. As a result, the line solver

does not facilitate proper propagation of information in the characteristic directions. For such a

low Re problem, the use of a point implicit Gaufl-Seidel smoother would be a better choice.
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Figure 28: Tinting Information: Re=l.0e6

Fig. 28(a) shows timing information for the algorithm on the. boundary layer problem. Tile

Reynohls number is 1 million and the fine mesh has 60399 points. The plot shows the CPU time
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required fi)r the solution versus the nmnl)er of multigrid levels with and without the preprocessing

time in('luded. This preprocessing time includes the time required to construct the coarse spaces

and implicit lines as well as factorization of the coarsest grid matrix. Fig. 28(b) shows the CPU

time required for the solution versus the numl)er of fine grid vertices for the three meshes mentioned

above with the number of coarse meshes fixed at 4.

5.6.2 Recirculation Flow

We also consider the linear convection diffusion equation (Eq. 45) over a square domain f_ =]- 1, 1[_

and prescribed velocity field U = (-y,x). Neumann boundary conditions _ = 0(Fig. 29) are

imposed on the domain boundaries and the flow field is initialized with random values ranging

from -1 to 1 with a mean of zero. The nominal Reynolds number is also defined as

Uh • lh
R_; --

I/

1

b'

The discretized fine mesh has 1990 points and an example of a solution converged to an RMS

residual tolerance of l0 -la is shown in Fig. 30 for a Reynolds number of 1 million. The range of _b

shown is between -1.17 x l0 -7 and 7.94 x l0 9.

The results in Fig. 31 show the dependence of the convergence rate for a number of Reynolds

mnnbers. There is significant deviation of the convergence rate as the Reynolds munber increases.

It can be seen that for the higher Reynolds number cases, the algorithm has increa_sing trouble in

damping out certain modes. This is due to the nature of the implicit lines in the context of an

unstructured grid. Due to the unstructured nature of the grid, these lines do not wrap around

on themselves (Fig. 32) and as such, the system of equations for the lines are not periodic. This

mcans that information cannot be propagated properly along the characteristic lines with resulting

deterioration in convergencc rate. However, there is a reduction of six orders of magnitude in the

residual before this effect becomes noticeable, so it is still possible to use the algorithm in the role

of a preconditioner to Krylov subspace solvers.
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